6和8的最大公因數(shù)是2。因?yàn)?=2×3;8=2×2×2,所以6和8的最大公因數(shù)是2。最大公因數(shù),也稱最大公約數(shù)、最大公因子,指兩個(gè)或多個(gè)整數(shù)共有約數(shù)中最大的一個(gè)。a,b的最大公約數(shù)記為(a,b),同樣的,a,b,c的最大公約數(shù)記為(a,b,c),多個(gè)整數(shù)的最大公約數(shù)也有同樣的記號(hào)。
如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。約數(shù)和倍數(shù)都表示一個(gè)整數(shù)與另一個(gè)整數(shù)的關(guān)系,不能單獨(dú)存在。如只能說16是某數(shù)的倍數(shù),2是某數(shù)的約數(shù),而不能孤立地說16是倍數(shù),2是約數(shù)。
"倍"與"倍數(shù)"是不同的兩個(gè)概念,"倍"是指兩個(gè)數(shù)相除的商,它可以是整數(shù)、小數(shù)或者分?jǐn)?shù)。"倍數(shù)"只是在數(shù)的整除的范圍內(nèi),相對(duì)于"約數(shù)"而言的一個(gè)數(shù)字的概念,表示的是能被某一個(gè)自然數(shù)整除的數(shù)。
幾個(gè)整數(shù)中公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。例如:12、16的公約數(shù)有1、2、4,其中最大的一個(gè)是4,4是12與16的最大公約數(shù),一般記為(12,16)=4。12、15、18的最大公約數(shù)是3,記為(12,15,18)=3。
幾個(gè)自然數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù),其中最小的一個(gè)自然數(shù),叫做這幾個(gè)數(shù)的最小公倍數(shù)。例如:4的倍數(shù)有4、8、12、16,……,6的倍數(shù)有6、12、18、24,……,4和6的公倍數(shù)有12、24,……,其中最小的是12,一般記為[4,6]=12。12、15、18的最小公倍數(shù)是180。記為[12,15,18]=180。若干個(gè)互質(zhì)數(shù)的最小公倍數(shù)為它們的乘積的絕對(duì)值。
在解有關(guān)最大公約數(shù)、最小公倍數(shù)的問題時(shí),常用到以下結(jié)論:
(1)如果兩個(gè)自然數(shù)是互質(zhì)數(shù),那么它們的最大公約數(shù)是1,最小公倍數(shù)是這兩個(gè)數(shù)的乘積。
例如8和9,它們是互質(zhì)數(shù),所以(8,9)=1,[8,9]=72。
(2)如果兩個(gè)自然數(shù)中,較大數(shù)是較小數(shù)的倍數(shù),那么較小數(shù)就是這兩個(gè)數(shù)的最大公約數(shù),較大數(shù)就是這兩個(gè)數(shù)的最小公倍數(shù)。
例如18與3,18÷3=6,所以(18,3)=3,[18,3]=18。
(3)兩個(gè)整數(shù)分別除以它們的最大公約數(shù),所得的商是互質(zhì)數(shù)。
例如8和14分別除以它們的最大公約數(shù)2,所得的商分別為4和7,那么4和7是互質(zhì)數(shù)。
(4)兩個(gè)自然數(shù)的最大公約數(shù)與它們的最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。
例如12和16,(12,16)=4,[12,16]=48,有4×48=12×16,即(12,16)×[12,16]=12×16。